

Fig. 7. Equilibrium vapour pressure of the reaction: analeime + quartz = albito + water. Curve A is that suggested by synthesis. Curve B is that estimated for the conditions that Ptotal = $3\,P$ II $_2$ O. The dotted extensions are schematic and illustrate the behaviour expected at low pressures.

wi

at gre

 P_1

th

OS

th

ze

in

th tic

cn

ze

dil

gr.

 P_1

ch be

be

gr

pu

ter

pr

we on

ine

be

ra

of

da

lit

Fig. 8. Diagram illustrating the difference in reaction temperatures in areas where $P_{\rm total} = P_{\rm H_2}$ 0 and where $P_{\rm total} = 3P_{\rm H_2}$ 0. X, Y and Z represent the equilibrium vapour pressures for successive dehydration reactions when $P_{\rm total} = P_{\rm H_2}$ 0, and X', Y', and Z' represent vapour pressures for the same reactions when $P_{\rm total} = 3P_{\rm H_2}$ 0. A gradient of 30°/km is assumed.

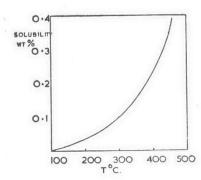


Fig. 9. General form of the 1750 bars solubility curve of quartz in water (after Kennedy, 1950a).

To regain equilibrium, the temperature must be lowered at constant pressure such that a term $\Delta T \Delta S$ equals the above $\Delta P \Delta V$ term. In this region the ΔS of the above reaction will be of the order of 5 cal/mole and $\Delta V_{\rm sollds} = 19~\rm cm^3$ so the new equilibrium temperature will be 150–200°C below the experimental value. The result is that of curve B (Fig. 7). Yoder (1954) has reported failure to produce the expected differential pressure effect with analcime. The subject warrants further investigation (see also HARKER, 1958).